環の直積

提供: testwiki
ナビゲーションに移動 検索に移動

テンプレート:Refimprove

数学において、いくつかのを1つの大きい直積環(ちょくせきかん)、積環 (せきかん、テンプレート:Lang-en-short) に合併することができる。これは次のようにされる: I がある添え字集合RiI のすべての i に対して環であれば、カルテジアン積 テンプレート:Nowrap は演算を 成分ごとの演算として定義することによって環にできる。

得られる環は環 Ri直積 (テンプレート:Lang-en-short) と呼ばれる。有限個の環の直積は環の直和テンプレート:Enlinkと一致する。

重要な例は整数nとした環 Z/nZ である。n素数のベキの積

n=p1n1 p2n2  pknk

ただし pi は相異なる素数、として書かれていれば(算術の基本定理を見よ)、Z/nZ は自然に直積環

𝐙/p1n1𝐙 × 𝐙/p2n2𝐙 ×  × 𝐙/pknk𝐙同型である。これは中国剰余定理から従う。

性質

テンプレート:Nowrap が環の積であれば、すべての iI に対して、i 番目の座標に積を射影する全射環準同型 テンプレート:Nowrap がある。射影 pi とともに積 R は、以下の普遍性をもっている:

テンプレート:Indent

これは環の積が圏論の意味での積の例であることを示している。しかしながら、I が有限のときには環の直和とも呼ばれるにもかかわらず、環の直積は圏論の意味で余積ではない。とくに、I が1つより多くの元をもっていれば、包含写像 テンプレート:Nowrap は環準同型ではない、なぜならばそれは Ri の単位元を R の単位元に写さないからだ。

iI に対して AiRiイデアルであれば、テンプレート:NowrapR のイデアルである。I が有限であれば、逆が正しい、すなわち R のすべてのイデアルはこの形である。しかしながら、I が無限で環 Ri が 0 でなければ、逆は間違いである。有限個を除いてすべてが 0 でない座標の元全体の集合は Ri たちのイデアルの直積ではないイデアルをなす。Ai の1つを除くすべてが Ri に等しく残りの AiRi の素イデアルであれば、イデアル AR素イデアルである。しかしながら、I が無限のとき逆は正しくない。例えば、Ri直和はどんなそのような A にも含まれないイデアルをなすが、選択公理によって、a fortiori に素イデアルである極大イデアルに含まれる。

R の元 x が単元であることとその 成分 のすべてが単元であることは同値である、すなわち テンプレート:Nowrap がすべての iI に対して Ri の単元であることは同値である。R の単元群は Ri の単元群の直積である。

1 つよりも多い 0 でない環の積は常に零因子をもつ: xテンプレート:Nowrap を除いて座標がすべて 0 の積の元で yテンプレート:Nowrap を除いて座標がすべて 0 の積の元 (テンプレート:Nowrap) であれば、積環において テンプレート:Nowrap である。

参考文献

関連項目