ブロッホ方程式
ブロッホ方程式(ブロッホほうていしき、テンプレート:Lang-en-short)とは、磁気共鳴の現象論的記述をする方程式を指す。1946年にフェリックス・ブロッホによって発表された[1]。1957年に米国の物理学者リチャード・ファインマンはブロッホ方程式がより一般的な量子力学の2状態系における密度行列の時間発展の記述に適用できることを示し、アンモニアメーザーの解析に応用した[2]。
概要
核スピンの集団があって、静磁場の中に置かれたとする。磁場の方向に テンプレート:Mvar 軸を一致させた直交座標を選ぶ。核スピン全体の テンプレート:Mvar 成分を テンプレート:Math 、その熱平衡値を テンプレート:Math と書く。核スピン全体の テンプレート:Mvar 成分 テンプレート:Math の熱平衡値は 0 である。 テンプレート:Mvar 成分も同様である。核スピンは静磁場のまわりをラーモア歳差運動しているが、高周波に共鳴するとスピンの向きが逆転する。こうして熱平衡でなくなった核スピン集団は急速に熱平衡状態に戻ろうとする。静磁場を テンプレート:Math、高周波の中の磁場成分を テンプレート:Math とするとこの様子は
で記述される。これらをブロッホ方程式という。テンプレート:Math は核磁気モーメント、テンプレート:Math は縦緩和時間、テンプレート:Math は横緩和時間である。
量子力学における2状態系
ブロッホ方程式は共鳴波長光に応答する原子の2準位系、光子の偏光状態、磁場に応答するスピン1/2の系等の一般的な量子力学における2状態系の記述に用いられる[3]。
正規直交化された2状態を テンプレート:Math とすると、系の量子状態 テンプレート:Math と密度行列 テンプレート:Math は
と表せる。このとき、恒等演算子とパウリ行列に対応する演算子[4]
を導入すると、密度行列は
と展開できる。但し、展開係数は
で与えられる。ここで
で定義される3次元単位ベクトルをブロッホベクトルといい、ブロッホベクトルがなす単位球面をブロッホ球という。
系のハミルトニアンを
とすると、ブロッホベクトル テンプレート:Math の時間発展は緩和項の無いブロッホ方程式
で与えられる[5]。こうした2状態系のブロッホ方程式による記述は、1957年にリチャード・ファインマンによって導入されたテンプレート:R。
脚注
参考文献
- 『物理学辞典』 培風館、1984年
- テンプレート:Cite book
関連項目
- ↑ テンプレート:Cite journal
- ↑ テンプレート:Cite journal
- ↑ 北野 (2010)、第8章
- ↑ 2状態 テンプレート:Math を特定の基底
- ↑ 密度行列が満たすフォン・ノイマン方程式