確率密度関数

提供: testwiki
2024年2月20日 (火) 05:45時点におけるimported>鈴木 浩太朗による版
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動
標準正規分布箱ひげ図および確率密度関数 テンプレート:Math

テンプレート:読み仮名とは、確率論において、連続型確率変数がある値をとるという事象の確率密度を記述する関数である。確率変数がある範囲の値をとる確率を、その範囲にわたって確率密度関数を積分することにより得ることができるよう定義される。確率密度関数の値域は非負の実数であり、定義域全体を積分すると1である。

例えば単変数の確率密度関数を平面上のグラフに表現して、テンプレート:Mvar軸に確率変数の値を、テンプレート:Mvar軸に確率密度を採った場合、求めたい範囲(テンプレート:Mvar値)の下限値と上限値での垂直線と、変数グラフ曲線と テンプレート:Math2 の直線とで囲まれる範囲の面積が確率になる。

「確率分布関数」 (probability distribution function)[1] あるいは「確率関数」 (probability function)[2] という用語は、具体的に何を指しているか現時点でも定義が曖昧であり、確率論研究者や統計学者の間では、その意味が標準的でないとされる場合がある。

他の資料に拠れば「確率密度関数」は値の集合に対する関数として定義されたり、累積分布関数との関係で言及されたり、確率質量関数の意味で使われたりする。さらには、密度関数 (density function) という用語が確率質量関数の意味で用いられている場合もある[3]

例として、寿命が4〜6時間程度のバクテリアがいると仮定する。この時、特定のバクテリアが丁度 5時間で死亡する確率はどれ位だろうか? 答えは0%である。およそ5時間で寿命を迎えるバクテリアはたくさん居るが、正確に5.0000000000…時間で死ぬことはない。

一方で、5〜5.01時間で死亡する確率はどうだろうか? 例えば、これが2%だとする。では、そのテンプレート:Sfracの範囲の5〜5.001時間である確率は? 答えはおよそ 2% × テンプレート:Sfrac = 0.2% となる。さらにその テンプレート:Sfrac の範囲の5〜5.0001時間である確率は、およそ0.02%である。

上記の3例において、『「特定の時間範囲内に死亡する確率」を「その範囲の長さ」で割った値』に着目すると、1時間につき 2 に定まることが分かる。例えば、5〜5.01時間の0.01時間の範囲でバクテリアが死亡する確率は0.02であり、確率 0.02 ÷ 0.01時間 = 2時間テンプレート:Sup である。この2時間テンプレート:Sup(毎時200%)という量を、5時間時点での確率密度と呼ぶ。

従って、「バクテリアの寿命が5時間である確率」を問われた時、真の答えは0%であるが、より実用的には、2時間テンプレート:Sup テンプレート:Math であると言える。これは、無限小の時間範囲 テンプレート:Math 内で、バクテリアが死亡する確率である。例えば、丁度5時間〜5時間 + 1ナノ秒の寿命である確率は、2時間テンプレート:Sup × 1ナノ秒 ≈ 6 × 10テンプレート:Sup である。

これを確率密度関数 テンプレート:Mvar を用いて、テンプレート:Mvar(5時間)= 2時間テンプレート:Sup と表現することができる。テンプレート:Mvar を任意の時間範囲(微小に限らない)で積分することで、当該時間範囲内でバクテリアの寿命が尽きる確率を求めることができる。

絶対連続確率分布での定義

テンプレート:See also 絶対連続確率分布では確率密度関数が存在する。確率変数 テンプレート:Mvar の確率密度関数 テンプレート:Mvar を考え、テンプレート:Mvar が非負のルベーグ可積分な関数であるとする。ここで、

P(aXb)=abfX(x)dx

である。従って、もし テンプレート:Mvarテンプレート:Mvar累積分布関数とすると、

FX(x)=xfX(u)du

となり、

fX(x)=ddxFX(x)

となる。直観的に、微小区間 テンプレート:Math に含まれる値を テンプレート:Mvar がとる確率は テンプレート:Math であると分かる。

正式な定義

(この定義は確率の公理によりあらゆる確率分布に拡張できる。)

完全加法族 (𝒳,𝒜)(通常、テンプレート:Math に可測集合としてボレル集合を考えたもの)中に存在する確率変数 テンプレート:Mvar は、(𝒳,𝒜) 中に測度 テンプレート:Math確率分布する。(𝒳,𝒜) 中の標準測度 テンプレート:Mvar に関する テンプレート:Mvar密度は、ラドン=ニコディムの定理より

f=dX*Pdμ

である。これは、テンプレート:Mvar は次の性質を持つ任意の可測関数であることを意味する。あらゆる可測集合 A𝒜 に対して、

P(XA)=X1AdP=Afdμ

注意点

上記の連続単変数の場合は、標準測度はルベーグ測度である。離散確率変数における確率質量関数は標本空間(通常、整数全体の集合またはその部分集合)内での数え上げ測度に対応する。

任意の測度で密度が定義できる訳ではないことに注意。例えば、連続確率分布に数え上げ測度を対応させることはできない。さらに、対応する測度が存在した時、密度はほとんど至るところで一意的である。

詳細

確率質量関数とは異なり、確率密度関数は1より大きな値を取りうる。例えば、区間 テンプレート:Math連続一様分布の確率密度関数は範囲 テンプレート:Math2テンプレート:Math、その他の範囲で テンプレート:Math である。

正規分布は下記の確率密度関数を持つ。

f(x)=12πex2/2

確率変数 テンプレート:Mvar とその確率密度関数 テンプレート:Mvar が与えられた時、テンプレート:Mvar期待値は(値が存在する場合は)次の式で求められる。

E[X]=xf(x)dx

全ての確率分布が確率密度関数を持つとは限らない。離散型確率変数が持たない他にも、カントール分布連続確率分布であるにもかかわらず、範囲内のあらゆる点で正の確率を持たないため、確率密度関数を持たない。

確率分布はその累積分布関数 テンプレート:Math絶対連続である場合にのみ確率密度関数 テンプレート:Mvar を持つ。この場合 テンプレート:Mvarほとんど至るところで微分可能で、テンプレート:Mvarテンプレート:Mvarラドン=ニコディムの定理である:

ddxF(x)=f(x)

累積分布関数が連続の場合、確率変数がある値 a をとる確率 テンプレート:Math は常に0である。

2つの確率密度関数 テンプレート:Math2 がほとんど至るところで等しい時、2つは正確に同じ確率分布から採られたと言える。

統計力学の分野では、累積分布関数のラドン=ニコディム微分と確率密度関数との関係を非形式的に書いた以下の式が確率密度関数の定義として用いられる。

テンプレート:Mvar が無限小の時、テンプレート:Mvar が区間(テンプレート:Math2に含まれる確率は テンプレート:Math に等しい。

P(t<X<t+dt)=f(t)dt.

離散分布と連続分布との結合

ディラックのデルタ関数を用いると、ある種の離散型確率変数によって連続型確率変数および離散型確率変数の確率密度関数を統一的に表現することができる。試しに、2つの値しか採らない離散型確率変数を考える。例えばテンプレート:仮リンク―すなわちそれぞれ テンプレート:Math の確率で テンプレート:Math または テンプレート:Math の値を採る分布―である。この変数の確率の密度は

f(t)=12(δ(t+1)+δ(t1))

である。より一般化すると、離散変数が テンプレート:Mvar 通りの実数値を取り得る時、その離散値を テンプレート:Math2, その確率を テンプレート:Math2 とすると確率密度関数は

f(t)=i=1npiδ(txi)

と表記される。

これは実質的に、離散型確率変数と連続型確率変数を統合している。例として、上記の表現からは連続変数と同様に離散変数について統計学的パラメータ(平均分散尖度など)を計算可能である。

パラメータ化

確率密度関数または確率質量関数を任意の媒介変数でパラメータ化することがしばしばある。例えば、正規分布の密度は平均 テンプレート:Mvar および分散 テンプレート:Math を用いて下記のように表現できる。

f(x;μ,σ2)=1σ2πexp[12(xμσ)2].

このとき密度の族の定義域と族のパラメータの定義域との違いに留意することが重要である。パラメータの値が異なると、同じ標本空間(変数が取り得る全ての値の集合で、同一である)に属する異なる確率変数の分布を表現することになる。その標本空間は、その分布の族が示している確率変数の族の定義域である。与えられたパラメータの集合は、そのパラメータを用いた共通の関数として確率密度関数を記述できる確率分布族の内の1つを指す。確率分布の観点からすると、パラメータは定数なので、確率密度関数に変数を含まずパラメータのみを含む場合、パラメータは分布のテンプレート:仮リンク(定義域全域での確率=1になる様に調整する係数)の一部を成す。この正規化係数は分布のカーネルテンプレート:Small外にある。

パラメータが定数なので、さらに異なるパラメータで再パラメータ化して族の中に他の確率変数を位置付けることは、単に古いパラメータを捨てて式の中に新しいパラメータを置くだけに過ぎない。しかし、確率密度の定義域を変更することには慎重さが必要で、作業量が多くなる。下記の#従属変数と変数変換欄を参照。

多変量に関する確率密度関数

同時確率密度関数

テンプレート:See also テンプレート:Mvar個の連続型確率変数 テンプレート:Math2 について、同時確率密度関数と呼ばれる確率密度関数を定義することができる。この確率密度関数は テンプレート:Mvar次元空間の定義域 テンプレート:Mvar 中の テンプレート:Mvar 個の変数 テンプレート:Math2 を用いて、下記のように書くことができる。

P(X1,,XND)=DfX1,,XN(x1,,xN)dx1dxN.

もし F (xテンプレート:Sub, …, xテンプレート:Sub) = Pr(Xテンプレート:Subxテンプレート:Sub, …, Xテンプレート:Subxテンプレート:Sub) がベクトル テンプレート:Math同時累積分布関数ならば、同時確率密度関数を偏微分で導くことができる。

f(x)=nFx1xn|x

周辺確率密度関数

テンプレート:See also テンプレート:Math2 の時、テンプレート:Math を変数 テンプレート:Mvar のみの確率密度関数とする。これは周辺確率密度関数と呼ばれ、確率変数 テンプレート:Math2 の確率密度関数から テンプレート:Mvar 以外の テンプレート:Math 個の変数を重積分することで求められる。

fXi(xi)=f(x1,,xn)dx1dxi1dxi+1dxn.

独立

同時確率密度関数を構成する連続型確率変数 テンプレート:Math2 がいずれも独立である時、

fX1,,Xn(x1,,xn)=fX1(x1)fXn(xn)

である。それぞれの周辺確率密度関数は下記で表される。

fXi(xi)=fi(xi)fi(x)dx

以下に2変数での基本的な例を記す。2次元の確率ベクトル テンプレート:MathR とすると、テンプレート:Math2 が共に正である第I象限で得られた R の確率は

P(X>0,Y>0)=00fX,Y(x,y)dxdy

である。

従属変数と変数変換

確率変数 テンプレート:Mvar の確率密度関数が テンプレート:Math である時、別変数の確率密度関数 テンプレート:Math を計算することができる。(多くの場合は必要ないが。)これは「変数変換」と呼ばれ、実際面では既知の(一様分布等)乱数生成器から任意の形の テンプレート:Math を導き出すことができる。

関数 テンプレート:Mvar単調写像である時、その結果得られる確率密度関数は

fY(y)=|ddy(g1(y))|fX(g1(y))

である。ここで テンプレート:Math逆写像である。

このことは微分範囲に含まれる確率が変数変換後も不変であることからも分かる。つまり、

|fY(y)dy|=|fX(x)dx|,

または

fY(y)=|dxdy|fX(x)=|ddy(x)|fX(x)=|ddy(g1(y))|fX(g1(y))=fX(g1(y))|g(g1(y))|

である。一方、単調写像でない確率密度関数 テンプレート:Mvar

k=1n(y)|ddygk1(y)|fX(gk1(y))

テンプレート:Mathテンプレート:Math2 を満たす テンプレート:Mvar の解の数、テンプレート:Math はその解)である。

これを見ると、期待値 テンプレート:Math を求めるためには最初に新たな確率変数 テンプレート:Math の確率密度 テンプレート:Math を求める必要があると思いたくなる。しかし、

E[g(X)]=yfg(X)(y)dy

を計算するよりはむしろ、

E[g(X)]=g(x)fX(x)dx

を計算する方がよい。

テンプレート:Mvarテンプレート:Math の両方が確率密度関数を持つ時、あらゆる場合に2つの積分値は等しい。テンプレート:Mvar単射である必要はない。前者より後者の計算が簡単である場合がある。

多変量

上記の式は、1つよりも多くの変数に依存する変数(テンプレート:Mvar と書く)に一般化できる。テンプレート:Mvar が依存する変数の確率密度関数を テンプレート:Math とすると、依存関係は テンプレート:Math で表される。このとき得られる確率密度関数はテンプレート:要出典

y=g(x1,,xn)f(x1,,xn)j=1ngxj(x1,,xn)2dV

となる。ただし積分は添え字の方程式の テンプレート:Math 次元の解全体を渡り、記号 テンプレート:Mvar は実際の計算にはこの解のパラメータ化に置き換えなければならない。変数 テンプレート:Math2 はもちろんこのパラメータ化の関数である。

これからより直感的な表現が導かれる。テンプレート:Mvar を同時確率密度 テンプレート:Mvarテンプレート:Mvar 次元確率変数とする。テンプレート:Mvar全単射で微分可能な関数として テンプレート:Math であるならば、テンプレート:Mvar は密度 テンプレート:Mvar を持つ:

g(𝐲)=f(𝐱)|det(d𝐱d𝐲)|

ここで微分は テンプレート:Mvar の逆関数のヤコビ行列テンプレート:Mvar における値である。

独立性を仮定してデルタ関数を用いると、以下のように同じ結果が得られる。

独立な確率変数 テンプレート:Math2 の確率密度関数が テンプレート:Math で与えられる時、テンプレート:Math2 の確率密度関数を計算できる。次の式は、テンプレート:Mvar の確率密度関数 テンプレート:Mathテンプレート:Math をデルタ関数で結合するものである。

fY(y)=fX1(x1)fX2(x2)fXn(xn)δ(yG(x1,x2,,xn))dx1dx2dxn

独立な確率変数の和の確率密度関数

テンプレート:See also 2つの独立な確率変数 テンプレート:Mvarテンプレート:Mvar がそれぞれ確率密度関数を持つ時、和 U + V の確率密度関数は両確率密度関数の畳み込みで表される。

fU+V(x)=fU(y)fV(xy)dy=(fU*fV)(x)

この関係は、テンプレート:Mvar個の独立な確率変数 テンプレート:Math2 の和に拡張できる。

fU1++UN(x)=(fU1**fUN)(x)

これは下記に示す独立な確率変数の商の場合と同様に、2通りの変数変換 テンプレート:Math2テンプレート:Math2 から導かれる。

独立な確率変数の積と商の確率密度関数

2つの独立な確率変数 テンプレート:Mvarテンプレート:Mvar がそれぞれ確率密度関数を持つ時、積 テンプレート:Math2 と商 テンプレート:Math2 の確率密度関数を変数変換によって計算することができる。

商の確率密度関数

2つの独立な確率変数 テンプレート:Mvarテンプレート:Mvar の商 テンプレート:Math2 は、次のように変換される。

Y=UV
Z=V

この時、同時確率密度関数 テンプレート:Mathテンプレート:Math2テンプレート:Math2 に変数変換することで計算でき、テンプレート:Mvar は同時確率密度関数から テンプレート:Mvar を周辺化することで導出できる。

その逆変換は、

U=YZ
V=Z

である。

この変換のヤコビ行列 J(U,V|Y,Z) は、

|UYUZVYVZ|=|ZY01|=|Z|

である。

従って、

p(Y,Z)=p(U,V)J(U,V|Y,Z)=p(U)p(V)J(U,V|Y,Z)=pU(YZ)pV(Z)|Z|

となる。

テンプレート:Mvar の分布は テンプレート:Mvar の周辺化によって、

p(Y)=pU(YZ)pV(Z)|Z|dZ

と計算される。

この手法で テンプレート:Math2テンプレート:Math2 に変換する時に不可欠な条件が全単射である。上記の変換は テンプレート:Mvarテンプレート:Mvar に直接逆写像され、与えられた テンプレート:Mvar について テンプレート:Mvar単調写像であるので条件に適合している。これは、和:テンプレート:Math, 差:テンプレート:Math、積:テンプレート:Mvar においても同様である。

独立な確率変数の積についても全く同じ手法で計算することができる。

例:2つの標準正規分布の比の確率密度関数

標準正規分布に従う確率変数 テンプレート:Math2 について、その比(商)の確率密度関数は次のように求められる。

まず、確率変数はそれぞれ下記の確率密度関数を持つ。

p(U)=12πeU22
p(V)=12πeV22

これを先に述べたように変換する。

Y=U/V
Z=V

これから、

p(Y)=pU(YZ)pV(Z)|Z|dZ=12πe12Y2Z212πe12Z2|Z|dZ=12πe12(Y2+1)Z2|Z|dZ=2012πe12(Y2+1)Z2ZdZ=01πe(Y2+1)uduu=12Z2=1π(Y2+1)e(Y2+1)u]u=0=1π(Y2+1)

が導かれる。これは、標準コーシー分布である。

関連項目

          

出典

テンプレート:Reflist

文献

The first major treatise blending calculus with probability theory, originally in French: Théorie Analytique des Probabilités.
The modern measure-theoretic foundation of probability theory; the original German version (Grundbegriffe der Wahrscheinlichkeitsrechnung) appeared in 1933.
Chapters 7 to 9 are about continuous variables.

外部リンク

テンプレート:確率論

  1. Probability distribution function PlanetMath
  2. Probability Function at Mathworld
  3. Ord, J.K. (1972) Families of Frequency Distributions, Griffin. ISBN 0-85264-137-0 (for example, Table 5.1 and Example 5.4)