バナッハ環
テンプレート:出典の明記 数学の、特に関数解析学の分野におけるバナッハ環テンプレート:Efn(バナッハかん、テンプレート:Lang-en-short; バナッハ代数、バナッハ多元環、バナッハ線型環)は、完備ノルム体(ふつうは実数体 テンプレート:Mathbf または 複素数体 テンプレート:Mathbfテンプレート:Efn)上の結合多元環 テンプレート:Mvar であって、バナッハ空間(ノルムが存在し、テンプレート:Ill2に関して完備)ともなる。バナッハ代数におけるノルムは乗法に関して
- 劣乗法性:
を満たすことが要求され、それにより乗法の連続性は保証される。名称はステファン・バナッハに由来する。
上述の定義において、バナッハ空間をノルム空間に緩める(つまり完備性を要請しない)場合、同様の構造はノルム環(ノルム線型環)と呼ばれる。
バナッハ環は、テンプレート:Underline乗法単位元を持つとき、単位的(unital)であると言うテンプレート:Efn。また乗法が可換であるとき、可換と言う。単位元を持つ持たないにかかわらず、任意のバナッハ環 テンプレート:Mvar は適当な単位的バナッハ環(つまり テンプレート:Mvar の「単位化」) テンプレート:Mvar にこの閉イデアルとなるように等長的に埋め込める。しばしば、扱っている環は単位的であるということがアプリオリに仮定される。すなわち、テンプレート:Mvar を考えることで多くの理論を展開でき、その結果を元の環に応用するという方法が取られることがある。しかしこの方法は常に有効という訳ではない。例えば、単位元を持たないバナッハ環においては、すべての三角関数を定義することが出来ない。
実バナッハ環の理論は、複素バナッハ環の理論とは非常に異なるものである。例えば、非自明な複素バナッハ環の元のスペクトルは決して空とはならないが、実バナッハ環においてはいくつかの元のスペクトルは空となり得る。
[[p進数|テンプレート:Mvar-進数]]体 テンプレート:Math 上のバナッハ代数(テンプレート:Mvar-進バナッハ代数)は、[[P進解析|テンプレート:Mvar-進解析]]の一部として研究される。
例
バナッハ環の原型となる例は、局所コンパクト(ハウスドルフ)空間上の(複素数値)連続関数で、無限大において消失するようなものからなる空間 テンプレート:Math である。テンプレート:Math が単位的であるための必要十分条件は、テンプレート:Mvar がコンパクトであることである。複素共役を対合として、テンプレート:Math は実際には[[C*-環|テンプレート:Mvar-環]]である。より一般に、すべての テンプレート:Mvar-環はバナッハ環である。
- 実または複素数全体の成す体は、絶対値をノルムとしてバナッハ代数 テンプレート:Math または テンプレート:Math を成す。このとき、ノルムの劣乗法性は「絶対値の乗法性」によって等号を以って成立する。
- すべての実または複素 テンプレート:Math 正方行列の成す集合 テンプレート:Math または テンプレート:Math は、劣乗法的行列ノルムを備えることで、単位的バナッハ環となる。
- 数バナッハ空間 テンプレート:Math(あるいは テンプレート:Math)は、(数ベクトル空間の構造と)最大値ノルム テンプレート:Math および成分ごとの乗算 テンプレート:Math によって得られる。
- 四元数の全体 テンプレート:Mathbf は、その絶対値で与えられるノルムによって、4-次元実バナッハ環を構成する。
- (点ごとの乗算と上限ノルムを備える)集合 テンプレート:Mvar 上で定義されるすべての有界な実または複素数値関数からなる環 テンプレート:Math または テンプレート:Math は、単位的バナッハ環である。
- (再び、点ごとの乗算と上限ノルムを備える)局所コンパクト空間 テンプレート:Mvar 上で定義されるすべての有界な実または複素数値連続関数からなる環 テンプレート:Math または テンプレート:Math は、バナッハ環である。
- (関数の合成で乗算を定め、作用素ノルムをノルムとする)バナッハ空間 E 上のすべての連続線型作用素からなる環は、単位的バナッハ環である。E 上のすべてのコンパクト作用素の集合は、この環における閉イデアルである。
- テンプレート:Mvar が局所コンパクト群(すなわち、位相空間として局所コンパクトかつハウスドルフであるような位相群)で、そのハール測度を テンプレート:Mvar とすれば、テンプレート:Mvar 上のすべての テンプレート:Mvar-可積分関数からなるバナッハ空間 テンプレート:Math は、その元 テンプレート:Mvar に対する畳み込み テンプレート:Math の下で、バナッハ環となる。(位相群の群環の項も参照)
- 一様環: 連続函数環 テンプレート:Math の部分環で上限ノルムを備え、定数を含み、テンプレート:Mvar の点を分離する(テンプレート:Mvar はコンパクトハウスドルフ空間でなければならない)ようなバナッハ環。
- 自然バナッハ関数環:すべての指標(character)が X の点での評価(evaluation)であるような一様環。
- C*-環:ヒルベルト空間上の有界作用素環の閉 ∗-部分環。
- テンプレート:仮リンク:局所コンパクト群上のラドン測度全体の成すバナッハ環で、二つの測度の積は測度の畳み込みで与えられる。
性質
冪級数を介して定義されるいくつかの初等関数は、任意の単位的バナッハ環において定義されうる。そのような例として、指数関数や三角関数、さらに一般的な任意の整関数が挙げられる(特に、指数写像はテンプレート:仮リンクを定義するために用いられる)。幾何級数の公式は、一般の単位的バナッハ環においても依然として有効である。二項定理もまた、バナッハ環の二つの可換な元に対して成立する。
任意の単位的バナッハ環 テンプレート:Mvar において可逆元全体の成す集合 テンプレート:Math は開集合であり、その集合上で反転 テンプレート:Math は連続(したがって位相同型)ゆえ、テンプレート:Math は乗法に関して位相群を成す。(位相線型環#性質も参照)
バナッハ環が単位元 テンプレート:Math を持つなら、テンプレート:Math は交換子にはなり得ない。すなわち、任意の テンプレート:Math に対して となる。
上述の例に現れる様々な関数環は、実数環のような標準的な例とは大きく異なる性質を持つ。それは例えば、以下のようなものである:
- 可除多元環であるようなすべての実バナッハ環は、実数環、複素数環あるいは四元数環と同型である。したがって、可除多元環であるような複素バナッハ環は、複素数環のみである(この事実はゲルファント=マズールの定理として知られる)。
- 零因子を持たず、すべての主イデアルが閉であるような単位的実バナッハ環は、実数環、複素数環あるいは四元数環と同型である。
- 零因子を持たない可換な実単位的ネーターバナッハ環は、実数環あるいは複素数環と同型である。
- (零因子を持つ持たないにかかわらず)可換な実単位的ネーターバナッハ環は、有限次元である。
- バナッハ環の恒特異元(permanently singular elements)の概念はテンプレート:仮リンクの概念に一致する。すなわち、バナッハ環 テンプレート:Mvar に対してその拡大バナッハ環 テンプレート:Mvar を考えるとき、テンプレート:Mvar における特異元のうちには適当な拡大バナッハ環 テンプレート:Mvar 内にその乗法的逆元を持つものが存在するが、テンプレート:Mvar の位相的零因子は テンプレート:Mvar の任意のバナッハ拡大 テンプレート:Mvar において恒に特異である。
スペクトル論
複素数体上の単位的バナッハ環は、スペクトル論を構成するための一般的な舞台となる。各元 テンプレート:Math のスペクトル(spectrum)テンプレート:Math は、テンプレート:Math が テンプレート:Mvar において可逆とならないようなすべての複素スカラー テンプレート:Mvar の集合である。任意の元 テンプレート:Mvar のスペクトルは、テンプレート:Mathbf 内の テンプレート:Math を中心とする半径 テンプレート:Math の閉円板に含まれる閉部分集合であり、したがってコンパクトである。さらに、各元 テンプレート:Mvar のスペクトル テンプレート:Math は空ではなく、スペクトル半径公式
を満たす。 テンプレート:Math が与えられたとき、テンプレート:仮リンクによって、テンプレート:Math の近傍で正則な任意の関数 テンプレート:Mvar に対し、テンプレート:Math を定義することが出来る。さらに、スペクトル写像定理:
が成り立つ[1]。 バナッハ環 テンプレート:Mvar が、複素バナッハ空間 テンプレート:Mvar の有界線型作用素環 テンプレート:Math(例えば、正方行列環)ならば、テンプレート:Mvar におけるスペクトルの概念は、作用素論における通常の概念と一致する。コンパクトハウスドルフ空間 テンプレート:Mvar 上で定義された テンプレート:Math に対して
が確かめられる。 テンプレート:Mvar-環の正規元 テンプレート:Mvar のノルムは、そのスペクトル半径と一致する。これは正規作用素に対する同様の事実の一般化である。
テンプレート:Mvar を複素単位的バナッハ環で、すべての非ゼロ元 テンプレート:Mvar は可逆であるとする(すなわち、可除多元環)。どの テンプレート:Math に対しても、テンプレート:Math が可逆でないような テンプレート:Math が存在する(これは テンプレート:Mvar のスペクトルが空ではないことによる)から、テンプレート:Math となり、この環 テンプレート:Mvar は テンプレート:Mathbf に自然同型である。これはゲルファント=マズールの定理の複素数の場合である。
イデアルと指標
テンプレート:Mvar を テンプレート:Mathbf 上の単位的「可換」バナッハ環とする。テンプレート:Mvar は単位元を持つ可換環であるため、テンプレート:Mvar の各非可逆元は テンプレート:Mvar の適当な極大イデアルに属す。テンプレート:Mvar 内の極大イデアル は閉であるため、 は体であるようなバナッハ環であり、ゲルファント=マズールの定理から、テンプレート:Mvar のすべての極大イデアルの集合と テンプレート:Mvar から テンプレート:Mathbf へのすべての非ゼロな準同型の集合 テンプレート:Math の間には全単射が存在することが分かる。集合 テンプレート:Math は テンプレート:Mvar のテンプレート:仮リンクあるいは指標空間(character space)と呼ばれ、その元は指標(character)と呼ばれる。
指標 テンプレート:Mvar は テンプレート:Mvar 上の線型汎関数で、乗法的 テンプレート:Math かつ テンプレート:Math を満たす。指標の核は閉であるような極大イデアルであるため、すべての指標は自動的に テンプレート:Mvar から テンプレート:Mathbf への連続写像となる。さらに、指標のノルム(すなわち作用素ノルム)は テンプレート:Math である。テンプレート:Mvar 上の各点収束の位相(すなわち、テンプレート:Math の弱-∗ 位相より導かれる位相)が備えられることで、指標空間 テンプレート:Math はコンパクトなハウスドルフ空間となる。
任意の テンプレート:Math に対し
が成立する。ここで テンプレート:Mvar は テンプレート:Mvar のテンプレート:仮リンク、すなわち テンプレート:Math で与えられる テンプレート:Math から テンプレート:Mathbf への連続関数である。上述の式において、テンプレート:Mvar のスペクトルは、コンパクト空間 テンプレート:Math 上の複素連続関数の環 テンプレート:Math の元としてのスペクトルである。明らかに
が成立する。環として、単位的可換バナッハ環が半単純(すなわち、ジャコブソン根基がゼロ)であるための必要十分条件は、そのゲルファント表現が自明な核を持つことである。そのような環の重要な一例は、可換な テンプレート:Mvar-環である。実際、テンプレート:Mvar が可換な単位的 テンプレート:Mvar-環であるなら、ゲルファント表現 テンプレート:Mvar と テンプレート:Math の間の等長 ∗-同型となるテンプレート:Efn。
脚注
注釈
出典
参考文献
関連項目
外部リンク
- ↑ Takesaki, Theory of Operator Algebras I. Proposition 2.8.