7

提供: testwiki
ナビゲーションに移動 検索に移動

テンプレート:Otheruses テンプレート:整数

「七」の筆順

7、しち、ひち、なな、ななつ、なー)は、自然数また整数において、6の次で8の前の数である。

英語では、基数詞でseven (セブン)、序数詞ではseventh。

読み

「七」の訓読みは「なな」、音読みは「しち」である。だが、「しち」という読みが言いにくく、また(いち)、(し)、(はち)と聞き間違いをしやすいことから、他の数字なら音読みする文脈でも訓読みすることが多い(70〈ななじゅう〉など)。ただし、「7月(しちがつ)」、「7時(しちじ)」は、聞き間違いを意識的に排除する場合を除き、音読みされることが多い。名数では、他の数字同様、後に続く語が音読みか訓読みかによって読みが決まる(「七福神〈しちふくじん〉」「七草〈ななくさ〉」など)が、希に、後に音読みが続くにもかかわらず訓読みするものもある(「七不思議〈ななふしぎ〉」など)。

七(しち)を「ひち」と発音する方言もある。例えば岐阜県の「七宗町」の読みは「ひちそうちょう」と公式に定められている。

金銭証書などで間違いを防ぐため「漆」ないし「柒」を用いることがある。

性質

7の倍数の見分け方

  • 「十の位以上の数 (10で除した商)」から「一の位の数 (10で除した剰余) の2倍を引いたもの」が7の倍数ならば、元の数は7の倍数である[2]。例として693の場合、テンプレート:Math であり、テンプレート:Math が7の倍数であることから、7の倍数であると判定できる。実際、テンプレート:Math なので7の倍数である。
  • 十進数では、12(=3×4)以下の数のうち、7の倍数だけが「一の位」「数字和」「下P桁がabc」「ゾロ目」のどれも使えず、「M×一桁数」で一の位が1になる数を探す方法になる。十進数では7×3=21なので、一の位に2を掛けて元数を10で割った商から減じ、1桁になるまで続ける。結果が 0 か 7 か −7[注 1]なら、元数は7で割り切れる。
    • 例1:259 → 25 - 9×2 = 7 → 259は7の倍数 (259 = 7 × 37)。
    • 例2:2023 → 202 - 3×2 = 196
      テンプレート:0000テンプレート:0196 → 19 - 6×2 = 7 → 2023、196はどちらも7の倍数 (2023 = 7 × 289、196 = 7 × 28)。
  • 桁数の多い十進数において、ある整数が7の倍数であるかどうかを判定する方法の一つとして、いくつか挙げられる
    • 1001が7の倍数であることを応用した方法
1001 = 7 * 11 * 13 だから 1000 = 1001 - 1 = ( 7 * 11 * 13 ) - 1
ここから、元の数を3桁ごとに区切り、得られた数を右から順に交互に加減算を行い、奇数番目の和と偶数番目の和の差を計算する。
差として得られた数を7で除した剰余が元の数を7で除した剰余に一致するので、この剰余が0であれば元の数が7の倍数であると判別できる。
たとえば 元の数を1234567890123 とした場合、
1234567890123 → 右から3桁ごとに「1」「234」「567」「890」「123」に分ける
→ 奇数番目の和と偶数番目の和
テンプレート:0000 (奇数番目) 1 + 567 + 123 = 691 、 (偶数番目) 234 + 890 = 1124
→ 2つの差は 691 - 1124 = -433 = (-1) * ( 7 * 62 + 1 )
元の数 (1234567890123) を7で除した剰余は 1となり、7の倍数ではない。( 1234567890123 = 176366841446 × 7 + 1 )
1,000,000100を 7 で除した剰余がそれぞれ 1 と 2 であることを応用した方法
まず、ある元の数を「下から7桁目以降の数」と「下から6桁の数」とに区切り、得られた2つの数字をそれぞれ「下2桁(C)」「中2桁 (3~4桁目、B)」「5桁目以降(A)」の3つに分け、「5桁目以降」の数字(A)同士、「中2桁」の数字(B)同士、「下2桁」の数字(C)同士、各々を加えた3つの数(AA、BB、CC)を求める。次に、この3つの数をそれぞれ7で除した"剰余"を求め、「AAの"剰余"の4倍、BBの"剰余"の2倍、CCの"剰余"、この3つを加えた和」の4つの数を求める。最後に得られた和を更に7で除し、その剰余を求めると、元の数を7で除した剰余に一致する。従って、この剰余が0であれば元の数が7の倍数であると判別できる。
たとえば 元の数を1234567890123 とした場合、
1234567890123 → 右から6桁ごとに「1234567」と「890123」に分ける
→ 「下2桁(C)」「中2桁 (B)」「5桁目以降(A)」に分け、桁の大きい方から順(A,B,C の順)に「 123, 45, 67 」 と「89, 01, 23 」に区分けする
→ それぞれ加える
テンプレート:0000(AA) 123 + 89 = 212, (BB) 45 + 01 = 46, (CC) 67 + 23 =90
→ "剰余"を求める
テンプレート:0000(AA) 212 mod 7 = 2, (BB) 46 mod 7 = 4, (CC) 90 mod 7 = 6
→ それぞれ指定の係数を掛けて足す
テンプレート:00002×4 + 4×2 + 6 = 22, ∴ 22 mod 7 = 1
元の数 (1234567890123) を7で除した剰余は 1となり、7の倍数ではない。( 1234567890123 = 176366841446 × 7 + 1 )
  • 十二進数での5の倍数と7の倍数の判定も、十進数での7の倍数の判定と同様になる。十二進数では5×5=21、7×7=41なので、7の倍数の場合は一の位に4を掛けて元数を10で割った商から減じ、1桁になるまで続ける。
    • 例1:115 → 5×4 = 18、11 - 18 = -7
    • 例2:1054 → 4×4 = 14、105 - 14 = B1。B1 → 1×4 = 4、B - 4 = 7

テンプレート:Clear

その他 7 に関すること

テンプレート:See also

筆記時、日本や台湾や韓国では1番のように書かれることが多い。その他の国では2番のように書くのが一般的で、数字の1との区別のために3番のように線を入れたりする。日本人が1を強調して書くときに、縦棒線の上にカギを付けることがあるが、その字形は欧米では7と認識される可能性がある。
電卓やデジタル時計等の7セグメントディスプレイでの表記方法は2通りある

言語

  • 7の接頭辞:sept(拉)、hepta(希)
    • 7倍、7重をセプテュプル(セプタプル、septuple)という。
    • 七種競技 (heptathlon) 等。
    • 七重奏のことをセプテット (septet) と言う。
  • 7を表すヘブライ数字ザイン
  • 24/7 (twenty-four seven) は、24時間・週7日間を意味し、転じて always(いつも)、24時間営業年中無休という意味を持つ。

7番目のもの

宗教に関する7

天文に関する7

遊びに関する7

パズルに関する7

その他

7個1組の概念

符号位置

テンプレート:特殊文字

記号 Unicode JIS X 0213 文字参照 名称

テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode テンプレート:CharCode

他の表現法

テンプレート:Number other reps

脚注

テンプレート:脚注ヘルプ

注釈

テンプレート:Notelist2

出典

テンプレート:Reflist

関連項目

テンプレート:Commonscat テンプレート:Wiktionarypar テンプレート:Wiktionarypar

外部リンク

テンプレート:節スタブ

テンプレート:自然数 テンプレート:Normdaten

  1. 『魅惑と驚きの「数」たち』 イアン・スチュアート著 P104
  2. 数学セミナー2003年3月号P59
  3. テンプレート:Cite web


引用エラー: 「注」という名前のグループの <ref> タグがありますが、対応する <references group="注"/> タグが見つかりません